AUGUST 1992

CHAO AND CHANG

Development of a Four-Dimensional Variational Analysis System
Using the Adjoint Method at GLA. Part 1: Dynamics

WINSTON C. CHAO
Goddard Laboratory for Atmospheres, NASA/GSFC, Greenbelt, Maryland

LANG-PING CHANG
General Sciences Corporation, Laurel, Maryland

{(Manuscript received 12 August 1991, in final form 25 November 1991)

ABSTRACT

Recent developments in the field of data assimilation have pointed to variational analysis (essentially least-
squares fitting of a model solution to observed data) using the adjoint method as a new direction that holds the
potential of major improvements over the current optimal interpolation (OI) method. The shortcomings of
the existing Ol analysis method, such as the questionable basic assumptions underlying some of the statistical
formulations and the linearity between the analysis and the observation, do not exist in variational analysis.
Moreover, variational analysis, by fitting a model solution to data, has the potential of avoiding the long-standing
spinup problem in numerical weather prediction. Finally, when the resulting analysis is used as the initial
condition for forecasting, since initialization will be performed internally to the analysis procedure, no separate
initialization procedure is required before forecast starts.

This paper describes the initial effort in the development of a four-dimensional variational analysis system.
Although the development is based on the Goddard Laboratory for Atmospheres General Circulation Model
(GLA GCM), the methods and procedures described in this paper can be applied to any model. The adjoint
code that computes the gradients needed in the analysis can be written directly from the GCM code. An easy
error-detection technique was devised in the construction of the adjoint model. Also, a method of determining
the weights and the preconditioning scales for the cases where model-generated data, which are error free, are
used as observation is proposed. Two test experiments show that the dynamics part of the system has been
successfully completed. A limited comparison of two minimization codes was conducted. The procedures pre-
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sented in this work are general and can be applied to various variational and sensitivity studies.

1. Introduction

In diagnostic studies of atmospheric general circu-
lation and in determining initial conditions for nu-
merical weather prediction, information on the state
of the atmosphere on a global or on a limited domain
basis and at regular intervals is required. Since obser-
vation, despite the use of satellites, does not have the
required comprehensive coverage for all state param-
eters, the general circulation model solution has been
introduced to help to fill the void. The task of blending
the observed data and the model solution in a consis-
tent manner in order to generate the “best™ estimate
of the four-dimensional atmospheric state is called data
assimilation.

Currently, the method of data assimilation in use at
major meteorological centers employs optimal inter-
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polation (OI) (e.g., Lorenc 1981) as the objective anal-
ysis method. The OI is used sequentially in that as the
model runs the available observations are inserted in
a statistically optimal manner. Efforts have been de-
voted to making the model retain the inserted obser-
vational data—thus the word assimilation. One ob-
vious property of the operational data assimilation is
that the observed data can influence the outcome of
the procedure or the analysis only at the current or
future time. Despite its improvements over the previous
methods, the current Ol method still has limitations.
First, being sequential, it is not a true four-dimensional
assimilation method. Second, the vertical and hori-
zontal separability assumption in the computation of
correlation coefficients used in OI is only for mathe-
matical convenience and does not have any physical
basis. Many other assumptions, such as Gaussian error
statistics (variational approach in using the least-
squares distance function also makes this assumption),
are made also for the purpose of convenience. Third,
observations can affect the current analysis only in a
linear manner-—though current modifications of OI
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are addressing this problem—whereas a nonlinear in-
fluence is expected from a physical point of view. Nev-
ertheless it should be pointed out that the weaknesses
of the current operational method are more of an im-
plementation nature than anything theoretical.

In view of these questionable features of the opera-
tional data assimilation, researchers, besides making
further improvements (e.g., Lorenc 1988a,b; Parrish

1989), have devoted efforts to exploring other ap-
proaches. Among them a very promising one is vari-
ational analysis using an adjoint model. In this ap-
proach, the model solution is used to fit the observed
data in a least-squares sense. The fit is measured by a
distance function (also called cost, penalty, or objective
function), which is a time integration of instantaneous
distance of model state from the observation for the
duration of the analysis. The initial and boundary con-
ditions, and/or externally added forcing, can be ad-
justed in an iterative procedure to minimize the dis-
tance function, thus creating the best fit. The model
solution in this best fit is the resulting analysis.

In the minimization procedure one uses a descent
algorithm, which requires at each iteration the gradients
of the distance function with respect to all the adjusting
parameters (e.g., the initial and/or boundary condi-
tions). A simple-minded way of obtaining these gra-
dients is to perturb each adjusting parameter one at a
time and to evaluate the variation in the distance func-
tion (Hoffman 1986). Obviously, since each evaluation
of the distance function requires a model integration
for the duration of the analysis period, and since for a
GCM with ordinary resolution the adjusting parame-
ters are numbered in the tens of thousands, this ap-
proach is impossible to implement. A feasible, yet still
CPU time-demanding way of evaluating these gra-
dients is through the adjoint method. Here, for each
iteration in the descent algorithm, the forecast model
is integrated forward once and the adjoint of the tangent
linear equation is integrated backward to the initial
time. The result of this second integration gives the
gradients one seeks. A more detailed description of this
approach will be given in the next section.

One important problem with variational analysis is
that the model is not perfect. The model solution,
which is used as the resulting analysis, despite its best
fit to data, does not precisely describe the real atmo-
sphere. This problem can be somewhat ameliorated by
using additional three-dimensional forcing terms in the
model equation as adjusting parameters (Derber 1989),
which is a way of using the model as a weak constraint.
However, there is a limit to what can be achieved by
this remedy. The model error has a time spectrum.
The additional forcing terms can correct only very few
components. Thus, the importance of improving the
model performance, with regard to variational analysis,
can never be overemphasized.

The comparison of variational analysis with Kalman
filter analysis has so far been only at a theoretical level.
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For a linear model used as a weak contraint, the two
approaches give the same results at the end of the anal-
ysis period (Thacker 1986). The comparison in cost
will not be clear until more efforts have been devoted
to both approaches.

One important property of variational analysis is that
data at one time level can influence the analysis results
of previous time levels, Thus, this approach is truly
four-dimensional. Also, the relationship between data
and analysis is nonlinear when the model or the for-
ward interpolation is nonlinear or the distance function
is not quadratic. The subsequent forecast starting from
the ending time of the resulting analysis, which is a
model solution with balance between dynamics and
physics, has much diminished spinup problem (i.e.,
the first 6-h precipitation is too high or too low), though
the analysis still suffers from the climate drift problem
that is essentially a modeling problem. Also, since
measures can be taken to suppress unrealistic gravity
waves in variational analysis, a separate initialization
procedure at the start of the forecast is not necessary.
Furthermore, variational analysis is particularly suit-
able for assimilating asynoptic data, such as satellite
data. In view of these exciting promises it is not sur-
prising that considerable effort has been devoted to
variational analysis (Lewis and Derber 1985; Le Dimet
and Talagrand 1986; Derber 1987, 1989; Talagrand
and Courtier 1987; Courtier and Talagrand 1987, 1990;
Lorenc 1988a,b; Navon et al. 1992).

Section 2 describes in more detail the fundamentals
of variational analysis using an adjoint model. Section
3 describes our developmental effort using the Goddard
Laboratory for Atmospheres General Circulation
Model (GLA GCM); it also includes our contributions
to error detection in the adjoint model and to weight
setting when model-generated data are used as obser-
vations. Section 4 gives some test results, which indicate
that the dynamics portion of our adjoint model has
been successfully completed. Section 5 contains a brief
discussion of the rate of convergence. Section 6 con-
tains the summary and concluding remarks.

2. Fundamentals of variational analysis using the
adjoint method

a. Fitting model solution to data

In variational analysis certain parameters of a model
are changed in order to fit the model solution to ob-
served data and background. The fit is measured by a
distance function

= % 2 (X - X)) TW(X; ~ X;)
i=0

+(Xo — Xp) B (Xo — Xy),

where array X; is the model analog (i.e., model solution
interpolated to the observation location) of observation
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X; at time level i, which runs from 0 to 7, and W is
the inverse of the observation error (including mea-
surement error and representation error) covariance,
which has different values for different variable types.
The smaller D is the better the fit is. The method used
for computing W for our experiments will be discussed
in a later section. Here X, is the analysis at the end of
the preceding analysis, and B is the analysis error co-
variance. If the analysis period is long enough, contri-
bution from the second term is relatively small. Because
of the limited scope of this initial paper, the second
term will be dropped in any further discussion, and it
will be included in future work. For a given model and
a given set of observations, D is a function of the model
parameters such as initial conditions X,, boundary
conditions, and/or extra terms in the model equations
representing model errors. For simplicity of discussion,
one can view D as a function of X, only; that is, D
= D(X,). Thus, the task of variational analysis is, for
a given set of observations in a certain period X; and
background X;, to adjust X, in order to minimize D.
(How other model parameters should be handled will
be discussed in section 3h.) The model solution cor-
responding to the X, that gives the minimal D, obtained
through a minimization algorithm, is the resulting
analysis.

The analysis period is not arbitrary. If, given a perfect
model, the analysis period exceeds the range of the
atmospheric predictability, the fit will not be very close.
When model error is taken into account, the analysis
period cannot exceed the range within which the model
can produce a good forecast. On the other hand, a very
short analysis period (say 1 or 2 h) cannot realize the
advantage of variational analysis of being truly four-
dimensional. The optimal analysis period is yet to be
determined experimentally.

b. Minimization algorithms

Of the different types of contending minimiza-
tion algorithms (steepest descent method, Newton’s
method, quasi-Newton methods, and conjugate-gra-
dient methods), the last one is the best compromise
in terms of convergence rate and computer memory
requirements for problems involving large dimensions.
The determination of the gradients of D with respect
to all of the adjusting parameters is required in many
descent algorithms, and will be described in the next
subsection.

To minimize D(X,) an initial guess of X, is taken
at the beginning of an iterative procedure. At each it-
eration the previous estimate of X§ is replaced by

XS+1:
X5 = X5 + (pd)",

when d is the descent direction and p is the step size.
In the steepest descent method d is simply the direction
opposite to the gradient Vy,D, or D’. The Newton’s
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method relates pd to the gradient D’ and the Hessian
matrix D”, which contains the curvature information;
that is, (pd)"” = —D’/D". Since Newton’s method uses
more information it provides a much faster conver-
gence rate than steepest descent. However, this is ac-
complished at the expense of computing D”, which has
an unacceptable memory core requirement when the
dimension of X is large, as in the meteorological vari-
ational analysis problem. Quasi-Newton methods at-
tempt to approximate the curvature information from
the previous iterations. However, they also suffer from
the excessive core requirement. The conjugate-gradient
methods also approximate D” from the D’s of the last
few iterations but avoid the core requirement problem
by not having to store a matrix. The memory require-
ment is on the order of 10x, » being the dimension of
X, a very large but manageable requirement for the
forthcoming supercomputers.

Various types of conjugate-gradient method are
available. Navon and Legler (1987) have reviewed and
evaluated many of them and have recommended the
CONMIN method (Shanno 1978; Shanno and Phua
1980) for meteorological applications. Moreover, Na-
von et al. (1990) have vectorized the CONMIN routine
for use on CYBER 205.

Gilbert and Lemarechal (1989 ) have tested a variable
storage quasi-Newton algorithm by Nocedal (1980)
and Liu and Nocedal (1989) that uses a limited BFGS
update formula. Their code, M1QN3, will also be used
in this study.

¢. The adjoint method of computing Vy, D

In the following description the adjusting parameters
of the model are assumed to be the initial condition.

The adjoint of a linear operator A, A*, is defined
by {u, Av) = (A*u, v), where u and v are elements
in a Hilbert space, with the inner product denoted by
the angle bracket. In discretized problems, u and v are
vectors and A is a matrix, with A* being its transpose.
Two simple properties of the adjoint operator, I* =
and (AB)* = B*A* are obvious. With these basics
stated, one can consider the variation of the distance
function D,

oD = ’2": <w(xl - xi)s 6xi>3

i=0

where X; is solution to the model equation 3X/dt
= F(X). Here, for simplicity, we have assumed that
observation is available at all model grid points. Also,
we have neglected the contribution to D from the dis-
tance to X,. The perturbation of the model state 6X;
is governed by the tangent linear equation

96X
— =F'(1)éX
- = Fl()x,

where F’ is the derivative of F with respect to X, eval-
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uated at X. Using the Euler time scheme as an example,
one can have

6X,~ = (I + AtF{-,)éX,-_l
= (I + AFI_)(I + AtFI_y)- + ~(I + AtF5)8Xo.
Thus,

m
8D = (3 (I + AtFg*)(I + ALFi*)« - -

i=1
(I + AFP*OW (X — X;), 6%o ).

The summation in this expression is the gradient
Vx,D. The ith term in this series is obtained by a back-
ward finite-difference integration of the adjoint equa-
tion
05’ X
——— = F'*(1)6'X
o (1)

from time step i to the initial step starting from

X =W (X — X;).

Thus, the procedures to obtain V, D for a given X, are
as follows:

1) Integrate the model from time ¢, to ¢, starting
from X,, and store the solution at each time step

xi (l=0’ 1: ',m).

2) Integrate the adjoint model
a
_ ’ = 7%, ’
% 0'X = F*()e'X

backward in time from ¢, to f,, starting from §'X
= W(X,, — X,,), and at each time step #; add to §'X
the quantity W(X; — X;). The resulting §'X at ¢, is
the gradient V, D.

Examples of deriving F'* have been given by Tal-
agrand and Courtier (1987) and Talagrand (1989).
An alternative derivation of the adjoint equation is
through the Lagrange multipliers method ( Thacker and
Long 1988). However, as will be shown in the next
section, the adjoint-model code can be constructed di-
rectly from the forward-model code in a straightforward
way, which is also conducive to easy error detection.
Thus, the lengthy derivation of the adjoint model either
in the differential form or in the discrete form is not
necessary.

d. Suppression of gravity waves

In the variational analysis, since the model uses all
of its degrees of freedom to fit data, unrealistically large
gravity-wave modes can exist in the resulting analysis.
Courtier and Talagrand (1990) suggested adding a
penalty term proportional to || dG/dt| to the distance
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function as a solution where G denotes the collective
amplitude of a set of gravity-wave modes. This com-
bined with a nonlinear normal-mode initialization
procedure on the initial condition at the beginning of
each iteration gives a satisfactory resolution of the
gravity-wave problem. We will defer the treatment of
gravity waves to future work.

e. Adjoint of the physical processes

Writing the adjoint of heating and friction terms in
the model equations can be very involved. These forc-
ing terms, as functions of thermodynamic variables,
can be discontinuous in themselves or in their first-
and second-order derivatives. The difficulty such dis-
continuities can present and its resolution will be a
subject of future work.

3. Details of the development
a. The forecast model

The forecast model used is the GLA fourth-order
GCM (Kalnay et al. 1983), with substantial revisions
by Suarez and Takacs of GLA. The dynamics part of
the model contains polar filter, Shapiro filter, A-grid,
fourth-order horizontal finite-differencing scheme, and
the Arakawa-Suarez (1981) vertical finite-differencing
scheme. Potential temperature, instead of temperature,
is used as a variable. Time integration is done with an
initial Matsuno time step followed by leapfrog time
steps. The Asselin time filter is used to control time
splitting. Matsuno scheme for all time steps is an op-
tion, but it is not used in this work because it requires
more computer time. In order to reduce cost at the
development stage, we use a low-resolution version of
this model with three layers and a 12° latitude X 10°
longitude horizontal resolution. A time step of 7.5 min
is used (though a larger time step is allowed ). Also, we
have conducted a linear test (Chao and Geller 1982)
on the dynamics part of the model. The test rendered
expected results and thus indicated that the linear terms
in the model dynamics are correct. Nonlinear terms
were checked by hand calculation. A brief description
of the model physics is postponed for a future paper.
Hereafter, the terms forecast model, GCM, and forward
model are used interchangeably.

b. The adjoint model

The adjoint model can be constructed directly from
the forward-model code. This is achieved by first writ-,
ing the tangent linear model directly from the forward-
model code. For example, a typical Fortran assignment
statement in the forward-model code is

W =AW + BXY,
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where A and B are constants and W, X, and Y are
variables. The corresponding Fortran statement in the
tangent linear code is

W =AW + B(FXY + XFY),

where FX and FY are the values of X and Y recorded
during the forward run (Not all forward run quantities
can be recorded, because of their volume; thus, recal-
culation of some of them, when needed, is necessary.
In our code only the prognostic variables themselves
are recorded at each time step. All other forward quan-
tities are recalculated.), and X, Y, and W now represent
the perturbation quantities. Once the tangent linear
code is written, one can obtain the adjoint code by
writing the adjoint of each statement of the tangent
linear code starting from the last tangent linear state-
ment and proceeding backward. The basic principle is
to treat each statement in the tangent linear code as a
linear operator, and the entire tangent linear code as
a series of linear operators. A typical statement in the
tangent linear code has the form of

W=A4X+ BY + CZ,

where X, Y, Z, and W are the perturbation variables,
and 4, B, and C are either constants or variables related
to the forward run results. This statement can be con-
sidered as a linear operation of the form O = MI, with
I=(X,Y,Z2)T,and O = (W, X, Y, Z)T, where T
denotes transpose, that is,

W A B C X
Xl (1t o o]y},
Y 0 1 0/\z
4 0 0 1

and the adjoint of this statement is

X\ (4 10 0\[F
Y|={B 0 1 0 vy |
Z C 0 0 1 Z
where X', Y’, Z’,and W’ represent the gradients of D
with respect to the forward model variables X, Y, Z,
and W, respectively. This example leads to the general
rule that the adjoint code corresponding to a tangent
linear statement:

(assuming W does not appear on the right hand side)
is the N statements (dropping the primes):

X, =X, +A4W, i=1,N.

Following these N statements it is necessary to set
equal to zero, if W appears on the right-hand side of
preceding statements in the tangent linear code. More-
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over, if W appears on the right-hand side of the tangent
linear statement, that is,

N
W=AW+ X B;X;,
i=1
one can treat it as two statements:

N
Z=AW + 2, B;X;, and

i=1

w==Z.
- Following the rule just stated, one obtains the adjoint
statements:
Xi=X;+B;WwW, for i=1,+++, N, and
W=AW.

The position of the last statement should not be
changed. One can write the corresponding adjoint code
directly from each forward-code statement with only
a mental note of the corresponding tangent linear code
and without actually writing down the entire tangent
linear code. The simple rule of writing adjoint code
obviously covers the writing of adjoint for any time
scheme in a simple manner, since any time scheme
when written in code is only a sequence of computa-
tions, and they can be handled just like any other group
of Fortran statements.

Because of the reverse-order nature of the adjoint
code a DO statement, such as DO 100 7 = 1, 200 in
the forward, is transformed in the adjoint code into
DO 100 I = 200, 1, —1. If the order of the index I in
the loop is not important in the forward code, it is also
unimportant in the adjoint code.

The condition in IF THEN-ELSE statements de-
termines which of the subsequent two groups of state-
ments is to be used. In the case of no ELSE statement
existing, the second group is a blank one. This condi-
tion should be recorded in the forward integration by
recording or recalculating all variables appearing in the
IF conditions in the forward integration. If the IF con-
dition involves only indices or independent variables,
no recording is required. In the adjoint code the same
condition is used to choose, from the two correspond-
ing groups of adjoint statements, the one corresponding
to the group that is used in the forward code.

Although the IF THEN statements pose no difficulty
as far as writing adjoint code and computing gradient
are concerned, they can be a great impediment to the
rate of convergence, as will be discussed in section 5.
Incidentally, because of the mechanical and tedious
nature of writing an adjoint code, developing an au-
tomatic adjoint generator is an active research area
(Griewank and Corliss 1991).

Our forward code has been written in a flexible
manner to allow any number of levels in the vertical
direction. This feature has been preserved in the adjoint
code.
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¢. An alternative derivation of rules for writing the
adjoint code

The rules presented in the preceding subsection can
be arrived at without invoking the concept of adjoint
operator. Basic knowledge of calculus suffices. In a
Fortran program a typical assignment statement has
the form of

y=f(x1, ***, Xm),

where y is a single variable and fis a differentiable
function. For simplicity, mathematical expressions
have been used to represent the Fortran statement. In
this subsection all equal signs have the meaning as used
in a Fortran assignment statement. Chain rule gives

o

m

af
y=|——|0x;+ --- I¢] 1
y (ax.) X ) Xims (1)
(which is the tangent linear statement where the de-
rivatives are calculated with results from the forward
run) and

of

v.0- (2

)VD i=1,-++,m, (2)

where V, D denotes gradient of D with respect to y and
D is a function of the final output of the Fortran code.
With this reminder, one can consider two consecutive
Fortran statements:

=f(xl’ ..

z=g(y9xly°°'9xm)' (3)

Since we are concerned with the gradient of an output
quantity with respect to input quantities, we will con-
sider the second statement first. The gradient relation-
ships are

"xm)

9 .
Vx —_V = . » ', N
D o, D, i=1, , m (4)
9g
V,D=—=V,D,
y 3y (5)
and, from the first statement in (3),
d
Vx,D~a—fVD+Vx,D i=1,++-,m. (6)

Equation (6), a Fortran assignment statement, is dif-
ferent from (2) in that an additional term, V,. D, ap-
pears on the right-hand side. This additional term
evaluated from (4) is necessary because a change in x;
can affect D through change in y in (3) and through
change in x;, which affects g directly. Thus, (2) cor-
responds to the special case of the consecutive state-
ments:

*, Xm), and

=f(xl, ..
x,-=0.
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Equation (6) is exactly the basic rule of writing adjoint
code given in the preceding subsection when .X; is used
to denote V,,D. It is obvious that adjoint variables
denote gradients of an output quantity with respect to
the model variables.

d. Verification of the adjoint code

The rudimentary equation used for code verification
is derived as follows. A model, or a subroutine of it, is
an operator (very often nonlinear):

y = F(x), where x is the input and
y is the output, or in its component form
* xn)] j.

The gradients with respect to the input can be expressed
by those with respect to the output:

v,D = 2 (GF

(]

Yi= [F(xI’ X2,

)vu
J

where D is any function of the output y. Since the
corresponding adjoint code (or subroutine) is a linear
operator linking the gradients with respect to the output
array y to those with respect to the input array x, it
can be expressed by

Vi«D = H(V,D),
where H is a matrix, or in its component form

Vx,.D = 2 H,',ijjD.
J

oF

The correctness of an adjoint subroutine can be verified
by checking if the matrix H and that corresponding to
(0F/dx;); are the same. The procedure for computing
H is to call the adjoint subroutine with all arguments
set at zero, except the ith one, which is a set at unity
(All input arrays can be equivalenced to one larger
array. Thus, we can assume there is only one input
array; the same can be done for the output arrays.),
and the output array gives the ith column of matrix
H. Matrix (dF/dx;); can be obtained by the pertur-
bation method. In the perturbation method the ith ele-
ment of the input array I of the forward subroutine is
perturbed by a small amount Al, and the resuiting
change in the output array O, AO, divided by Al,
should be close to the ith row of the matrix (9F/ax;);.
This array is to be compared with the corresponding
row of the adjoint matrix H. Any doubt as to whether
the match is close enough can be removed by repeating
the perturbation calculation in double precision, which
allows a Al several (say six) orders of magnitude

Therefore,
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smaller. If the match improves greatly, success can be
claimed. To reduce computational cost it is advanta-
geous to use a minimal resolution version of the model
for this testing purpose. Once the existence of an error
has been established, a simple technique can be used
to narrow down the area of search, that is, to comment
out the first half of the forward subroutine and the
corresponding second half of the adjoint code and see
if the matrices match. Often by tracing the adjoint
statements involved in computing the matrix element
in question, one can also narrow down the area of
search. After each individual adjoint subroutine has
been tested, the entire adjoint code should be tested as
a whole by the same procedure. Incidentally, for either
the construction or the verification of the adjoint code,
there is no need to write the tangent linear code.

e. Distance function

For the experiments described in this paper the dis-
tance function is defined as

D=2 D,
=0

= 3D Wi — uf)* + We(viss — vire)?

=0 ijk

+ WI;‘( Tijkz - 3‘/«)2] + E Wps(ps,y, _pfv);,-,)z},

ij

where 2« and 2 are the summations over all obser-
vation points, 2, is the summation over time, W ’s are
the weights (we use the same weight for each variable
at each level; for our three level model there are ten
weights ), and superscript 0 denotes observation. Other
notations have their standard meanings. The weight
W, has the same units as those of x 2. Thus, D is non-
dimensional. Nonsuperscripted variables are those of
the model. In the experiments discussed in this paper,
data generated by the forecast model will be used as
observation. Thus, observation is available at all grid
points (The variables i and j in the definition are the
model horizontal indices, and k is the vertical index.)
and at all time steps. Interpolation from model grid to
observation location is thus avoided. In the final im-
plementation, other terms should be included in the
distance function to represent penalty on gravity waves,
distance from background, etc. However, they are not
included in this initial paper.

[ Minimization procedure

The CONMIN procedure (Shanno 1978a; Shanno and
Phua 1980), recommended by Navon and Legler
(1987), and M1QN3 from INRIA (Gilbert and Lema-
rechal 1989) are used. A limited comparison of these
two procedures will be presented in section 4.
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g Backward integration of the adjoint model

Since the leapfrog scheme used gives two sets of out-
putat¢t=m — 1 and ¢t = m at the end of the forward
run, the adjoint variables are initialized at ¢ = m and
t = m — 1 with the gradients of D,,, + D,,,_, with respect
to model variables at ¢ = m and ¢t = m — 1. In these
initial conditions, V,, D,,and V., _ D,,_, are computed
directly from the definition of D,, and D,,—;, which
involve observations and forward-model results, and
V,,...Dmand V, D,,_, are set at zero. After a single
time-step reverse leapfrog integration, one obtains the
gradient of (D,, + D,,_), with respect to model vari-
ablesat? = m — 1 and t = m — 2. If there is observation
at t = m — 2, its distance gradients with respect to
model variables V,, _.D,, , are added to the adjoint
variables at t = m — 2 before the subsequent reverse
leapfrog step is taken. This procedure repeats until one
reaches time levels ¢ = 1 and 0. Subsequently, an ad-
joint of the Matsuno step is used, followed by the ad-
dition of the gradient of Dy, with respect to model vari-
ables at initial time. The end result is the gradients
V., D of the distance function with respect to the model
initial conditions. The gradients thus computed should
be verified against those computed by the perturbation
method.

h. Variational analysis with respect to any model
parameters

Thus far, the discussion has been restricted to the
case that distance function is a function of initial con-
ditions only. The procedure described in section 3b to
compute gradients of distance function with respect to
initial conditions can also be used to compute gradients
with respect to any model parameters with minimal
changes. The only change involved is to treat those
parameters as variables when writing the adjoint codes.
A single backward integration gives the gradients, with
respect to both initial conditions, and the chosen model
parameters. The minimization can be done in the phase
space consisting of both initial conditions and the cho-
sen model parameters. Alternatively, by ignoring the
gradients with respect to initial conditions the adjoint
model computes, one can do variational analysis with
respect to the chosen model parameters only. If the
chosen parameters are the additional systematic-error
correction terms in the governing equations, one can
repeat the work done by Derber (1989) with a GCM.
Incidentally, it should be pointed out that the material
in this subsection will not be used in the rest of this
paper, but will be employed in future work.

i. Weights and preconditioning scales setting for
model-generated “‘observation”

When real data are used, the weights should be the
inverse of rms sum of measurement error and repre-
sentation error. However, in the tests described in the
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next section, the model-generated data are used as
“observations.” These observations have no error, and
the normal method would render infinitely large
weight, which implies infinite confidence, but can not
be used. If the weights meant for real data are used and
if no preconditioning scales (to be explained shortly)
are used, in the first experiment we did (as described
in the next section ) the surface-pressure component of
the distance function failed to diminish after large
number of iterations and the convergence among the
other variable types are not uniform. In the second
experiment, convergence was achieved only after large
number of iterations and when the rate of convergence
was highly nonuniform among different variable types.
The reason for such behavior lies in the fact that the
constant distance surface is highly stretched in some
dimensions. The upper panel of Fig. 1 gives such a
sketch of stretched structure. In the first experiment
the constant distance surfaces are so stretched in the
surface-pressure direction that the gradient computed
is practically perpendicular to surface pressure dimen-
sion. Thus, reduction in the surface-pressure compo-
nent of the distance function cannot be achieved. The
second experiment encountered the same problem,

A =
A
YWy Up
JWr T,

FIG. 1. (a) Schematic diagram showing the constant D surfaces
in the nondimensional X, space when weights meant for the real data
are used. (b) Schematic diagram showing the constant D surfaces in
the nondimensional X, space when the optimal weights are used.
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though to a lesser degree. Therefore, a different avenue
must be sought.

Thus, we will take advantage of the freedom to
choose the weights and the choice of setting of the pre-
conditioning scales to enhance the rate of convergence
and to ensure that the latter is uniform among different
variables. The weights are set in a way that capitalizes
a simple geometric concept. In the initial condition
phase space the gradient G is of course perpendicular
to the contour surface of D. The rate of convergence
in the iterative procedure can be optimized if G points
toward the observation point (Fig. 1). Our definition
of D gives the constant D surface roughly an elliptic
shape in the initial condition phase space. The con-
vergence rate can be optimal if the elliptic shape can
be transformed into a more spherical one. This can
also result in a more uniform rate of convergence
among the variable types. This concept forms the basis
of our approach in determining the weights. This con-
cept is well known and is linked to the condition num-
ber of the Hessian matrix, ratio of the largest eigenvalue
of the Hessian matrix to the smallest eigenvalue (Gill
et al. 1982; Thacker 1988). Instead of considering the
dimensional initial condition space, we will consider
the nondimensional initial condition space spanned
by ten collective dimensions, that is, three variables

“types u, v, and T at three levels plus surface pressure.

The word “collective” means summation over all hor-
izontal grid points, and it will be more clear when the
procedure is described in the Appendix. Figure 1 shows,
as an example, a simpler initial-condition space of two
collective dimensions, ©# and T. Points o, the center,
and s, the starting point of the arrow, denote obser-
vation and model solution and G is the gradient of D
with respect to u and 7'. The weights are determined
such that line os is parallel to G in an iterative procedure
given in the Appendix. The number of iterations re-
quired is an increasing function of the number of
weights involved. In the experiments, ten weights were
involved and eight iterations were sufficient. It is im-
portant to emphasize that our method requires that
minimization be done in the nondimensional space,
though the adjoint method of computing the gradients
is still done in the dimensional space. The scales that
are used to nondimensionalize the control parameters
(in our present work, the initial conditions) are called
the preconditioning scales. Our method clearly allows
the computation of weights as functions of latitude and
weights for more variables, such as mixing ratio.

In principle, the weights can be functions of grid
points also. In this case there are as many weights as
the number of initial conditions. Once the weights have
been determined, convergence can be achieved in one
minimization iteration, since the ‘“surface” of equal
distance function takes on a spherical shape in the ini-
tial condition space. However, little gain in total cost
can be expected because the number of iterations in-
volved in computing the weights will increase.
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After a few (say, ten) minimization iterations, this

procedure can be invoked again to recompute the

weights. However, our limited experience indicates that
the improvement from recomputing the weights is not
always worth the extra cost of recomputing the weights.
The final decision to use this restart technique should
be based on the particular experiments at hand.

Finally, we like to reiterate that this method of setting
weights and preconditioning scales is useful only in
our test experiments in which model-generated data
are used as observations to be described in the following
section. When real data are used one should use weights
inversely related to the observational error, and one
has only the preconditioning scales to choose. How to
set these scales will be discussed in future work.

4. Test experiments

Besides performing separate tests for the code of each
individual adjoint subroutine in the model and their
combination, the system (including the forecast model,
the adjoint model, and the minimization procedure)
should be tested as a whole. One simple test is to run
the forecast model from any reasonable initial condi-
tion for a suitable period (for example one day) and
use the resulting model-generated data as observation.
Starting from another initial condition, the analysis
system is expected to recover the original initial con-
dition through the iterative procedure; that is, the dis-
tance function should reduce to zero. Such a test has
the distinct advantage over tests using the real data. In
the real-data case, reduction of the distance function
to zero is not achieved leaving one in doubt as to
whether the system is free of error. Incidentally, in this
test the suppression of gravity waves is not a concern.

Two such tests were conducted. Analogous to the
Rossby-Haurwitz wave test in Talagrand and Courtier
(1987), the first test run generates the observation data
from a run started from a normal-mode solution of
wavenumber 1 of mixed Rossby-gravity mode with
isothermal basic state (Chao and Geller 1982). This
run was integrated for 6 h, and the results were stored
at every time step and used as the observations. The
results at hour 3 are used as the initial conditions for
the analysis (or iteration) run. Thus, the analysis run
started from an initial condition nearly identical to that
of the observations run but with a westward phase shift
of 38.4°. Figure 2 shows the distance function as a
function of iterations. The results with M1QN3 (with
m = 10, where m is a parameter related to the size of
working array ) give more than two orders of magnitude
of reduction in the distance function in 14 iterations.
Also, fairly uniform convergence was achieved among
the variable types. The rms surface-pressure error re-
duced from 0.41 to 0.020 mb in 14 iterations, and that
of the second-level u# wind reduced from 0.16 to 0.004
m s~} This result indicates that our method of weights
determination is nearly optimal. The same test using
CONMIN gives a slower rate of convergence, it took two
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1 FOR IMAINT 6-HR RUN M=10 ISO
2 FOR BMAINT 6-HR RUN 1SO

1.0000 <2 ————r——r T T Ty
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LOG (FUNC RATIO0)
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0.0050

0.0010 PR S
0
ITERATION

F1G. 2. Distance function as a function of iterations for the first
test using M1QN3 with m = 10 (line 1) and CONMIN (line 2).

more iterations to achieve the same amount of reduc-
tion in the distance function. M1QN3 uses more terms
in the approximation to D” than the conjugate-gradient
method in CONMIN.!

In the second test, which is closer to the real situation,
the model was run for 6 h starting from hour 0 of 4
January 1979 of the European Centre for Medium-
Range Weather Forecasts (ECMWF) analysis, and the
results were stored as observation. Iteration run started
from hour 0 of 24 January 1979. Figure 3 shows the
distance function as a function of iteration for the two
minimization codes. Both achieved a similar amount
of reduction in distance function. The rms error of
surface pressure reduced from 27 to 1.4 mb, and that
of the second level u reduced from 13.7 to 0.64 m s™*
after 30 iterations. CONMIN took almost twice as many
gradient computations (each involves the integration
of both forward and adjoint models) as M1QN3 did,
making the latter a much better choice. However,
MIQN3 uses more memory. Table 1 gives a summary
of the comparison of the performance of the two min-
imization codes. Further iterations with CONMIN, Fig.
4, reduced the surface-pressure rms difference to less

! The optional quasi-Newton method in CONMIN can not be used
because of the excessive memory requirement.
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VALUES MULTIPLIED BY 10 FOR [TER GT 15
1 FOR IMAINT B~HR RUN M=10
2 FOR IMAINY B-HR RUN M=2
3 FOR BMAINE B-HR RUN

0.5000

LOG (FUNC RATI0)
a

0.0500 |

hde 1y

2 4 6

—t P ' —_—d b L

0.0100 " b2 1 L
4 8 10 12 14 16 18 20 22 24 26 28 31

ITERATION

F1G. 3. Distance function normalized by its initial value as a func-
tion of iterations for the second test using M1QN3 with m = 10 (line
1) and m = 2 (line 2) and CONMIN (line 3).

than 0.5 mb after 60 iterations. These results indicated
that our development effort, thus far, has been suc-
cessful. We have also conducted the same experiments
using weights as a function of variable types but not
of levels. As expected, the results were much inferior
in terms of rate of convergence.

5. Rate of convergence and further experiments

Our experiments show that the rate of convergence
for a 6-h analysis period is much slower than that for
a 2-h period (not shown). The reason for this (c.f.,
Derber 1987) lies in the shape of constant D surfaces
in the X, space, as mentioned in section 3i. The more
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VALUES MULTIPLIED BY 100 FOR ITER GT 20
1 FOR BMAINT B-HR RUN M=10
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F1G. 4. Same as Fig. 3 with CONMIN only for 60 iterations.

spherical these surfaces are the faster the rate of con-
vergence is. In the extreme case of a zero analysis period
(i.e., m = 0 in section 3e), surfaces of constant D have
the shape of a smooth hyperellipsoid, and through ad-
justment of weights or control parameters they can be
made spherical. As the analysis period increases, the
surfaces of constant D can stretch in many dimensions,
resulting in a slower rate of convergence. This concept
also explains why the rate of convergence in our first
experiment is faster than that in the second experiment
(Figs. 2 and 3). The first experiment has relatively
slower evolution.

We have repeated the experiment shown in Fig. 3
after changing the Shapiro filter used in the model from
sixteenth order to eighth order. The results showed little
change in the rate of convergence. This merely indicates

TABLE 1. Results after 30 iterations.

CONMIN MIQN3, m = 2 MIQN3, m = 10 Initial value

Ratio of final distance function to initial

distance function 0.0071 0.0069 0.0046 1
Root-mean-square error in surface pressure (mb) 1.98 1.84 1.42 27
Root-mean-square error in second-level u

wind (m s!) 0.77 0.77 0.64 13.7
Root-mean-square error in second-level 8 (K) 0.18 0.16 0.13 3.9
Number of function calls* 62 33 33

* Each function call involves a forward run with the GCM and a backward run with the adjoint model.
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that the difference between the eighth- and the six-
teenth-order Shapiro filter is negligible. However, our
experiments revealed a great sensitivity of the rate of
convergence with respect to observation interval. Figure
5 shows the rate of convergence for observation inter-
vals of 7.5 min, 1 h, 3 h, and 6 h in experiments oth-
erwise identical to that associated with Fig. 3 (using
CONMIN), with weights and scales kept the same. The
rate of convergence is higher for lower frequency of
observation used and is the best for 6-h interval, that
is, when only observations at hour 0 and hour 6 are
used. Another interesting feature in Fig. S is that such
sensitivity to the observational interval is not very
prominent during the initial iterations.

These findings can be again explained by considering
the shape of the distance function in the scaled initial-
condition space. But we will first consider the quantity
D,, as defined in section 3e, in the scaled initial-con-
dition space. Contours of D, are nearly spherical for ¢
= 0 and depart from being spherical as ¢ increases
mainly through the linear process of stretching in cer-
tain dimensions in the initial two days (Lacarra and
Talagrand 1988). As illustrated by the solid curve in
Fig. 6, the degree of departure (DD) of D, contour
surfaces from a perfect sphere, increases as ¢ increases,
and saturates at a certain value. Mathematically, DD
can be equated to the condition number of the Hessian
associated with D, in the scaled initial-condition space.

VALVES MATIALIED BY 10 FOR ITER GT 19
1 FOR DT=7M30S 78901
2 FOR OT=1HR 7801
3 FOR OT=3R 7301

1.0000 T T T T T T T T v—'—r—!—r—!—r—l—r—r—r—vj
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FIG. 5. Same as Fig. 3 (using CONMIN), but with observation
interval set at Az = 7.5 min, | h, 3 h, and 6 h.
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FIG. 6. Schematic diagram showing the departure from spherical
shape of the contour surfaces of D,, as defined in section 3e, in the
scaled initial-condition space as a function of z. The solid curve is
for the later iterations, and the dash curve is for the initial iterations.

The DD of the distance function in the scaled initial-
condition space, the deciding factor of the rate of con-
vergence, is the average of DD of the D,’s used. Since
DDho“\-3 is greater than (DDhourO + DDhour 6)/29 DD
of the distance function for At = 3 h is greater than
thatfor At=6h [i.e., (DDhourO + DDhour 3+ DDth-6)/
3 > (DDypouro + DDypour6)/2]. Therefore, it is obvious
that the rate of convergence is less for Az = 3 h than
for At = 6 h. Further halving Az has a smaller impact
on the rate of convergence. Thus, the sensitivity of the
rate of convergence to observation interval hinges on
the saturation of DD in Fig. 6. The reason that this
sensitivity is not very prominent in the initial iterations
(Fig. 5) lies in the fact that for the initial iterations the
initial condition is far away from hour 0 observation
and DD takes a longer time to saturate (the dashed
curve in Fig. 6). Here DDy, 3 is still greater than
(DDyjour 0 + DD1ours)/2, but not by much.

6. Summary and future work

In summary, we have completed writing the dy-
namics part of a variational analysis system based on
the GLA GCM using the adjoint method. We devised
a simple error-detection procedure, which greatly fa-
cilitated the construction of the adjoint code. A method
of determining weights in the distance function and
preconditioning scales when model-generated data are
used 1s presented, which gives a better rate of conver-
gence and a more uniform convergence among differ-
ent variable types. Two test runs, one with a normal-
mode solution and the other with realistic initial con-
ditions, have shown that our work, thus far, has been
successful. Our experiments showed a greater rate of
convergence for shorter analysis period and longer ob-
servation interval. These results have been explained
by considering the shape of distance function contour
surfaces in the scaled initial-condition space.

The remaining work to complete the development
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is sizeable. The immediate future work involves the
handling of the real data, the setting of preconditioning
scales for the real data, incorporation of a quality con-
trol procedure, suppression of gravity waves, and in-
corporation of the background term in the distance
function. Further work with the full model is in pro-
gress. There are two directions under consideration for
the purpose of reducing the computational requirement
of variational analysis. One is to use multiple resolution
systems; the first few iterations that fit mostly the larger-
scale features can be done with a coarser resolution.
The second direction is the use of a semi-Lagrangian
scheme that allows a larger time step. For the purpose
of reducing the storage requirement, periodic storing
of the forward run results, instead of at every time step,
will be studied. The comparison of two minimization
codes (M1QN3 and CONMIN with the former showing
better performance) in this paper is very limited. Fur-
ther comparison will be conducted with a full model
and with higher spatial resolution.

Besides stretching, which is a linear phenomenon,
constant D surfaces can become irregular through
nonlinear evolution of the model (Fig. 7), resulting in
slowing down of the rate of convergence. This is a par-
ticular concern when physical processes are included
that have high nonlinearity. In more extreme cases,
some IF statements may allow discontinuous results
across the IF condition thresholds resulting in discon-
tinuous surfaces of constant distance function. The
model should be revised to remove these discontinuities

Xo - space

FIG. 7. Schematic diagram showing (a) the smoothness of the
constant D surfaces in the X, space when the analysis period is short
and (b) the unevenness after a period of nonlinear evolution.
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as much as possible. Discontinuities in first and second
derivatives across the IF condition threshold should
also be removed as much as possible to improve the
rate of convergence. Such a task naturally requires a
thorough knowledge of the model design, and will be
an important part of our future work.
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APPENDIX

Procedure for Computing Weights and
Preconditioning Scales When Model-generated
Data Are Used

The procedure in the following is only for the cases
where model-generated data are used as observations.
When real data are used, weights should be related to
observation error, and one has only the preconditioning
scales to choose, which will be discussed in future work.

Starting from arbitrary weights W,, Wr, and W,
the steps are as follows:

1) Compute the ratio of contributions to distance
function by integrating the forward model:

Wr 2 (T~ T°):W, X (u— u)*:
W, 2 (s — p2)* = a®:8%:y2,

where the summation is done over three-dimensional
grid points (two-dimensional for pg) and over all time
levels.

2) Compute the gradients of D with respect to initial
conditions by integrating the adjoint model and com-
puting the magnitude of collective components:

IVTDL IVMD|’ va:DI'

3) Multiply VD's by (Wr)™'/2, (W,)™2, (Wp) '
and compute ratios

|VW1;ZTDI:|VW‘,{ZUD|:|VW‘,,’,§D| = A:B:C.
4) Multiply Wy, W,, and W, by A/«, B/B, and
C/v to get new W’s,

5) Keep repeating steps 1-4 until the change in #’s
is no longer significant.

The purpose of step 4 is to make the gradient vector
in the collective nondimensional space point toward
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the observation; that is, a:8:y = A:B:C. Since changing
weights changes the definition of D, the procedure
should be iterated.

Extension to the case where W is a function of ver-
tical level is straightforward. With weights thus deter-
mined, the minimization procedure should be done in
the nondimensional space. In other words, we scale the
variables with scales W, '/2, W7'/?, and W ,'/* for a
preconditioning purpose. However, since the forecast
and adjoint models are done in the dimensional space,
in the minimization code the variables should be con-
verted to dimensional quantities before computing the
gradient V, D. After the gradient computation, X and
V..D are both converted to nondimensional variables
by dividing and multiplying, respectively, by W2. Al-
though three weights are used in this description, ex-
tension to allow weights as functions of vertical level
and weights for more variables is straightforward. In
the experiments reported in section 4, ten weights are
used, one for each of the variables u, v, and T, at each
of the three levels and one for p;.
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