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ABSTRACT

A simple and fast algorithm for generating two correlated stochastic two-dimensional (2D) cloud fields
is described. The algorithm is illustrated with two broken cumulus cloud fields: cloud optical depth and
cloud-top height retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS). Only two
2D fields are required as an input. The algorithm output is statistical realizations of these two fields with
approximately the same correlation and joint distribution functions as the original ones. The major as-
sumption of the algorithm is statistical isotropy of the fields. In contrast to fractals and the Fourier filtering
methods frequently used for stochastic cloud modeling, the proposed method is based on spectral models
of homogeneous random fields. To retain the same probability density function as the (first) original field,
the method of inverse distribution function is used. When the spatial distribution of the first field has been
generated, a realization of the correlated second field is simulated using a conditional distribution matrix.
This paper serves as a theoretical justification of the publicly available software “Simulation of a two-
component cloud field,” which has been recently released. Although 2D rather than full 3D, the stochastic
realizations of two correlated cloud fields that mimic statistics of given fields have proven to be very useful
to study 3D radiative transfer features of broken cumulus clouds for a better understanding of shortwave
radiation and the interpretation of remote sensing retrievals.

1. Introduction

To better understand and predict shortwave radia-
tion in realistic cloudy atmospheres, we need to specify
the 3D distribution of cloud liquid water. Also, statis-
tical cloud retrievals that include 3D radiative transfer
need to be trained on a large number of 3D cloud fields
(Evans et al. 2008). Realistic cloud fields and spatial
distributions of cloud liquid water can be obtained from
either dynamical or stochastic cloud models. Based on
cloud dynamics, physical (or dynamical) cloud models
such as a large-eddy simulation (LES) or a cloud-
resolving model (e.g., Ackerman et al. 1995) are physi-
cally consistent but require specification of a lot of at-
mospheric parameters and often are computationally
expensive. On the other hand, stochastic cloud models
based on aircraft, satellite, or ground measurements of

cloud structure are computationally inexpensive and
can output a much larger range of scales than dynami-
cal models. Stochastic cloud models are mostly 2D be-
cause currently there are no techniques to measure a
full 3D cloud structure. (To get a 3D stochastic model,
one can assume the same statistics for both horizontal
directions; see Evans and Wiscombe 2004; Hogan and
Kew 2005.)

Over the last two decades, many different cloud sto-
chastic models have been developed. We break them
into two classes. The first class of cloud models uses
only a few parameters to simulate the main aspects of
the realistic cloud fields like the mean, standard devia-
tion, and correlation (often assumed to be a power
law). These models are very simple and are generally
used to test hypotheses and better understand cloud–
radiation interaction; they include the fractionally inte-
grated cascade model (Schertzer and Lovejoy 1987),
the bounded cascades (Cahalan 1994; Marshak et al.
1994), the fractional Brownian motion (Voss 1985), the
Fourier filtering of Gaussian noise (Barker and Davies
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1992; Evans 1993; Várnai 2000), and the Poisson distri-
bution of cloud elements (Zuev and Titov 1995), to
name a few. These models generally produce an unbro-
ken (overcast) 2D x–y field of cloud optical depth or
cloud liquid water path. To obtain the desired cloud
fraction, a simple threshold can be used (e.g., Barker
and Davies 1992; Marshak et al. 1998).

The second class of cloud stochastic models provides
a statistical reconstruction of an observed field and gen-
erates the detailed cloud structure. They are also called
statistical cloud generators (Venema et al. 2006a;
Schmidt et al. 2007). These cloud models are usually 3D
rather than 2D. For cumulus clouds, Evans and Wis-
combe (2004) used time–height radar data to generate
2D realizations of cloud liquid water that are then gen-
eralized to 3D fields assuming statistical homogeneity
and horizontal isotropy. For stratocumulus clouds, Di
Giuseppe and Tompkins (2003) generated 3D cloud liq-
uid water fields by combining stochastic horizontal
models based on a power spectrum and Fourier filter-
ing (at each height) with realistic vertical profiles of
total water and temperature. From radar time–height
series, using a Fourier transform technique, Hogan and
Kew (2005) generated realistic 3D cirrus clouds with a
fallstreak structure vertically changing the slope of the
power spectrum. Venema et al. (2006a,b) generated a
surrogate cloud field with a liquid water distribution
and spatial correlation (through a power spectrum) sta-
tistically similar to the observed one. Venema et al.
(2006b) also compared radiative properties of LES
clouds with their surrogate fields and Venema et al.
(2006a) provided an excellent review of different cloud
generators. Finally, we mention the Scheirer and
Schmidt (2005) generator, which reproduces cloud
fields of liquid water and effective radius using aircraft
data. Schmidt et al. (2007) used cloud fields simulated
by the last three generators as input to a 3D radiative
transfer model to compare its output with the radiative
flux measurements.

The current paper describes a simple stochastic
model that belongs to the second class of cloud stochas-
tic models. For given 2D fields of cloud optical depth
and cloud-top height, the model generates realizations
of these two fields with the same covariance of the
cloud mask and the joint distribution as the original
fields. In contrast to Evans and Wiscombe (2004), it
does not generate 3D cloud liquid water fields but
rather provides the x–y fields of cloud optical and geo-
metrical thicknesses (assuming a constant cloud base).
To simulate the required autocorrelation function, it
uses spectral models of homogeneous random fields
(Prigarin 1995, 2001) rather than commonly used Fou-
rier filtering (e.g., Evans 1993; Di Giuseppe and Tomp-

kins 2003; Evans and Wiscombe 2004; Hogan and Kew
2005; Venema et al. 2006b). Another distinguishable
feature of this paper is that it provides a theoretical
background for the publicly available software that has
been recently developed and released by the authors.

The plan of the paper is as follows: The next section
briefly discusses two stochastic models of broken
cloudiness that are based on a truncated Gaussian ho-
mogeneous field. The (auto)correlation function of a
2D field defines its structure. Section 3 describes how to
generate a quasi-Gaussian field with a given correlation
function that is retrieved from the covariance of the
indicator function of the original field. Section 4 then
explains how to modify the field to reproduce the ob-
served distribution. In section 5 we generate the second
field using the joint distribution of the given fields of
cloud optical depth and cloud-top height. Section 6 il-
lustrates the theory with Moderate Resolution Imaging
Spectroradiometer (MODIS) data; section 7 summa-
rizes the main steps of the proposed algorithm and dis-
cusses its applications. Section 8 gives a brief summary
of the results. At the end, appendix A demonstrates the
relations between the covariance functions of a Gauss-
ian random filed and its indicators, and appendix B
illustrates spectral models of Gaussian isotropic homo-
geneous random fields on the x–y plane.

2. Quasi-Gaussian model of broken cloudiness

Let us assume that our cloud field has a constant
cloud base at height H0 and a variable cloud top de-
scribed by

w�x, y��H0�max�a���x, y�� d�, 0	 for �� � d � �.

�1a�

Here, 
(x, y) is a homogeneous Gaussian field with zero
mean, unit variance, and a correlation function K(x, y)
[with K(0, 0) � 1]. The point (x, y, z) belongs to a cloud
if H0 � z � w(x, y). A value w(x, y) � H0 simply means
that there is a cloud gap in the horizontal point (x, y).
The cloud-top field w has two parameters: a and d.
Parameter a � 0 stretches the cloud-top field vertically
and parameter d defines the truncation level (cf. Mar-
shak et al. 1998).

Simultaneously with Eq. (1a), we consider another
model (Kargin and Prigarin 1988) of cloud top:

w�x, y� �H0 �max�a�|��x, y� |� d�, 0	 for 0 � d � �.

�1b�

We will call Eqs. (1a) and (1b) models A and B, re-
spectively. Figure 1 illustrates the difference between
the two models. We can see that for model A, a positive
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d corresponds to a broken cloud field while a negative
d corresponds rather to a more “overcast” cloud with a
few gaps. Based on Fig. 1, one can say that model B
better represents the cellular structure of stratocumulus
whereas model A is for more broken cumulus clouds.

It can be shown that cloud fraction Ac has a different
value for both models, namely:

Ac � P���x, y� � d� � 1 � ��d�, over �� � d � �,

�2a�

for model A and

Ac � P���x, y� � d� � 2�1 � ��d��, over 0 � d � �,

�2b�

for model B, where

��d� �
1

�2�
�
��

d

exp�� x2

2 � dx

is the standard normal cumulative distribution function,
which ranges between 0 and 0.5 for negative d and
between 0.5 to 1 for positive d.

For both models, we can determine the average num-
ber of clouds mc per unit area as a limit of the number
of clouds in a convex domain of area S divided by S
when S tends to infinity. Note that mc is dimensionless.
Obviously mc will depend on d and the autocorrelation
function K. For isotropic fields, one obtains [e.g.,
Sveshnikov 1968, Eq. (45.51), p. 441]

mc � i
d

��2��3
k exp�� d2

2 � for d � 0, �3�

where i � 1 for model A and i � 2 for model B. Here,
k � 0 is the second derivative of �K(x, y) with respect
to x or y taken at x � y � 0 (with a negative sign). Note
that for isotropic fields, the derivatives are equal [see
Eq. (5) below].

Figure 2 shows the dependence of mc on cloud frac-
tion Ac for both models and isotropic fields. We see that
the number of clouds first increases with cloud fraction
and then decreases. This is because the cloud fraction
Ac itself monotonically decreases with the truncation
level d whereas the number of clouds mc first increases
with d and then decreases (see Fig. 1). Note that for
model A, the number of clouds mc for Ac � 0.5 (d 
 0)
is not defined. The generalization of Eq. (3) to aniso-
tropic fields is straightforward (Prigarin and Marshak
2005).

To summarize, both cloud models A and B are
uniquely determined by parameters a and d and a cor-
relation function K. To simulate a cloud field with a
given cloud fraction Ac, we first solve Eq. (2) for the

FIG. 1. A schematic illustration of models A and B; H0 is a
constant cloud base and d is a cutting threshold level.

FIG. 2. Number of clouds per unit area mc (k � 1), as a
function of cloud fraction Ac for models A and B.
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truncation level d. Then it is necessary to generate the
correlation function K(x, y) based on some additional
information about correlation in a real cloud field. Pa-
rameter a is determined from a simple one-point statis-
tic describing the cloud-top height field. The most dif-
ficult part of such an approach is the choice (or gen-
eration) of the correlation function K; it will be
discussed in the next section.

Finally, we emphasize that the cloud-top height field
w(x, y) is simulated in two steps: (i) simulation of the
Gaussian field 
(x, y) with mean zero and correlation
function K(x, y) and (ii) calculation of w(x, y) with
parameters a and d using (1a) or (1b). The problem of
numerical simulation of Gaussian random fields has
been well studied [e.g., chapters 1, 2, and 4 in Ogorod-
nikov and Prigarin (1996), as well as Prigarin (2001)
and references therein] and will not be discussed here.
Appendix B illustrates the approximation of a Gaussian
homogeneous random field used in the numerical ex-
amples in section 6.

3. Correlation function

The correlation function defines the geometrical
structure of a cloud field, including the size and distri-
bution of individual clouds and the space between
them. Perhaps the simplest and/or the most determin-
istic isotropic cloud field used in the first stochastic
models can be defined by a Bessel function of the first
kind, J0 (see Gikhman and Skorokhod 1977, p. 87). In
this case, the correlation function is

K�x, y� � J0���x2 � y2�, �4�

where parameter � is responsible for cloud sizes (the
larger the value of �, the smaller an average cloud is). It
is easy to see that

k � �
	2K�x, y�

	x2 |
x�y�0

� �
	2K�x, y�

	y2 |
x�y�0

�
�2

2
.

�5�

Thus, to define �, one uses Eq. (3), which relates the
average number of clouds per unit area mc and the
second derivative k. Because � is fixed, the use of
the correlation function (4) is very limited and the
cloud fields based on it are unrealistic (see Fig. 3 as an
example).

To generalize (4), Prigarin et al. (1998) used the ra-
dial spectral density of a Gaussian field z(�) and a rep-
resentation of the normalized correlation function as an
integral over all cloud sizes � of a product between z(�)
and J0:

K�x, y� � �
0

�

J0���x2 � y2�z��� d�. �6�

Here, z(�) 
 0 and ��0 z(�)d� � 1. Varying z(�), in
general, one can get any correlation function of a ran-
dom isotropic field on the plane.

Below we briefly describe a general procedure for
generating the correlation function K(x, y) based on
observations (leaving the details for appendix A). As
an illustration, in section 6 we apply our algorithm to a
broken cloud scene retrieved from MODIS.

Let I(x, y) be an indicator function (a binary cloud
mask) that takes value 1 if there is a cloud above point
(x, y) and 0 otherwise. Based on observations, we can

FIG. 3. Configuration of cloud fields (300 km � 300 km) for models (left) A and (right) B
on the basis of a Gaussian random field with a correlation function J0 for the same cloud
fraction Aс � 0.58 (� � 0.5; d � �0.20 for model A and 0.55 for model B). To simulate a
Gaussian random field, a spectral model from Prigarin (2001, section 1.1.4) was used; see also
appendix B.
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estimate the mathematical expectation of I, which is a
cloud fraction Ac :

Ac � E �I�x, y�� �7�

and its covariance function,

KI�x, y� � E �I�x, y�I�0, 0��. �8�

It is known (Ogorodnikov and Prigarin 1996, p. 65) that
the covariance function KI(x, y) of the indicator field
I(x, y) and the correlation function K(x, y) of a Gauss-
ian field 
(x, y) are nontrivially related. This relation-
ship allows us to retrieve the correlation function K(x,
y) from the measured covariance function KI(x, y). The
main steps of the retrieval are described in appendix A.
Note that the truncation level d is uniquely defined
from Eqs. (2) and (7).

4. Geometrical thickness with a given density

Equations (1a) and (1b) alone do not allow us to
control the distribution of cloud geometrical thickness
w(x, y) � H0. Determined by Eqs. (1a) and (1b), this
distribution is a scaled-up (a � 1) or -down (a 
 1)
truncated (by a parameter d) Gaussian distribution; its
density is defined by

fa�h� �
1

aC
��h

a
� d� for h � 0 and

C � �
d

�

��x� dx, �9�

where �(x) � 1/2� exp(�x2/2) is a standard Gaussian
density. However, the observed distribution of cloud
thickness does not necessarily satisfy Eq. (9). In gen-
eral, one has to modify Eqs. (1a) and (1b) to reproduce
the observed distribution. We describe below a modi-
fication of a Gaussian model that allows reproduction
of any given distribution. This modification is based on
the method of inverse distribution function widely used
in statistical modeling (e.g., Ogorodnikov and Prigarin
1996, 65–71).

Let g(h) (h � 0) be a density of the observed distri-
bution of cloud thickness. We denote its distribution
function by

G�h� � �
0

h

g�x� dx, for h � 0. �10�

It is easy to see that if

F�h� � �
0

h

f1�x� dx, for h � 0, �11�

is the distribution function [with density f1(h) defined in
Eq. (9) where a � 1] and xi is a random variable dis-

tributed with the density f1, then G�1F(xi) will have a
density of the observed distribution of cloud geometri-
cal thickness. Indeed, there is a general statement (e.g.,
Gentle 2003, p. 42): if F is a distribution function of a
random variable xi then F(xi) is uniformly distributed
on the interval (0, 1). Therefore, the random variable
G�1F(xi) has the probability density g. Note that a
method of inverse distribution function similar to the
above has been also used by Evans and Wiscombe (2004)
to generate lookup tables for cloud liquid water content
and droplet effective radius [see their Eq. (A.3)].

This leads us to the following modification of Eqs.
(1a) and (1b):

w�x, y� � H0 � G�1F�max���x, y� � d, 0�	, where
�� � d � � �12a�

for model A, and

w�x, y� � H0 � G�1F �max�|��x, y� | � d, 0�	, where
0 � d � �. �12b�

for model B.
In contrast to (1a) and (1b), distributions of cloud

thickness w(x, y) � H0 defined by either (12a) or (12b)
match the observed probability distribution G(h). In
addition, we recall that 
(x, y) is a homogeneous Gauss-
ian field with zero mean and unit variance; its correla-
tion function K(x, y) is retrieved from the covariance
function KI(x, y) of the observed cloud mask field I(x,
y). For both models, parameter d is uniquely deter-
mined from the average value of I(x, y), that is, cloud
fraction Ac [see (7)].

5. Joint distribution of optical and geometrical
thicknesses

We assume here that we have two random variables:
cloud optical depth �(x, y) and cloud geometrical thick-
ness h(x, y). Then a pair (�, h) will be a two-dimensional
variable and P(�1 
 � 
 �2, h1 
 h 
 h2) will be the
probability that the values of � and h fall in the intervals
(�1, �2) and (h1, h2), respectively.

Practically (see next section), when two matrixes �
and h are given from observations, we first subdivide all
their values into M and N bins, respectively. Then we
calculate a conditional distribution matrix:

P�m, n� � P�� is in m’s bin, provided h is in n’s bin�,
m � 1, . . . , M, n � 1, . . . , N. �13�

Now, if we assume that we have a realization of one
variable, say h, then by using the conditional distribu-
tion matrix P we can simulate a distribution of a second
variable, �. This is a straightforward procedure similar
to a simulation of random number with a given distri-
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bution. As a result for each point (x, y) we will get both
�(x, y) and h(x, y) preserving conditional distribution
(13) as well as the distribution of the random vector
[h(x, y), �(x, y)]. The order of simulation (first � and
then h or first h and then �) is irrelevant for the repro-
duction of the joint distribution of the components of
this two-dimensional vector.

Note that realizations of the second component gen-
erated using a conditional distribution matrix (13) are
usually more stochastic (or noisy) than the given one.
This is especially well pronounced if the original field
has a strong spatial heterogeneity (e.g., the highest val-
ues are localized in several neighboring pixels). In a
simulated field, these high values are not necessarily
well localized and sometimes can be distributed
through the whole scene, making it much noisier. This
problem has been discussed in more detail in Prigarin
and Marshak (2008).

6. Illustration with MODIS data

To illustrate the above theory with observations, we
have selected a 1-km spatial resolution MODIS 68
km � 68 km broken cumulus cloud scene (Fig. 4a) from
a less polluted region in Brazil, centered at 17°S and
42°W. The data were acquired on 9 August 2001 at 1015
LT. The solar zenith angle �0 � 41°. This scene is part
of phase 3 of the International Intercomparison of 3D
Radiative Transfer Codes (I3RC; Cahalan et al. 2005)
and has been used for the analysis of the retrieved
droplet size by Marshak et al. (2006) and for the radia-
tive effects of broken clouds on aerosol retrievals by
Wen et al. (2007). The cloud fraction in the scene is
Ac � 0.4. The MODIS image is collocated with a high–
spatial resolution (15 m) Advanced Spaceborne Ther-
mal Emission and Reflection Radiometer (ASTER)
image (Yamaguchi et al. 1998) plotted in Fig. 4b. The

FIG. 4. A 68 km � 68 km region in Brazil centered at 17°S and 42°W collected on 9 Aug 2001 at 1015 LT. The
solar zenith angle �0 � 41°; the solar azimuth angle �0 � 23° (from the top). (a) MODIS true color RGB
(red–green–blue) 1-km resolution; (b) ASTER RGB 15-m resolution; (c) retrieved cloud optical thickness; (d)
retrieved cloud-top height (in km).
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solar azimuth angle �0 � 23° (from upper right corner),
as can be confirmed from the casting of the shadows.

In Figs. 4c and 4d we have also added the retrieved
cloud optical depth and cloud-top height at a 1 km � 1
km resolution. Unlike the retrieved 1 km � 1 km cloud
optical depth from the operational MODIS product,
the operational cloud-top height retrievals have a 5
km � 5 km resolution (Platnick et al. 2003). To esti-
mate the 1 km � 1 km resolution of cloud-top height,
we used the brightness temperature at 11 �m (MODIS
band 31) (see Wen et al. 2007 for details). As a result,
Figs. 4c and 4d will serve as the basic scenes for our
illustration.

First, Fig. 5a shows the indicator function I(x, y) of
the cloud optical depth field from panel 4c. The cloud
fraction, as a mathematical expectation of I defined in
(7), is 0.4. Figure 5b is the indicator function of a real-
ization of a simulated field that has the same covariance
function KI(x, y) as the measured one. As shown in
appendix A, to get K(x, y) we first estimated the co-
variance function KI defined in (8) and then retrieved
K(x, y) with the help of the Owen function (Prigarin et
al. 2004).

Next we illustrate how the distribution of cloud op-
tical depth can be reproduced using Eq. (12a). This is
done for model A, which perhaps agrees better with the
observations than model B (Prigarin and Marshak
2005). Four realizations of cloud optical depth distribu-
tion are plotted in Fig. 6. All of them have approxi-
mately the same covariance function KI(x, y) of the
indicator field (see Fig. 7) and probability density func-
tion (pdf) g(�) as the original cloud optical depth field
shown in Fig. 5c. Figure 8 illustrates these five pdfs: the
original one and the four realizations of cloud optical
depth from Fig. 6.

Now we illustrate the joint distribution of optical
depth and cloud-top height. Figure 9 shows a joint dis-
tribution function; Fig. 10 shows an example of two
conditional distributions F(h |�) for � � 3.5 � 0.5 and
� � 10 � 1. The conditional distributions of cloud-top
height h are obviously different. Finally, Fig. 11 (for the
realization of the cloud optical depth plotted in Fig. 6b)
shows three realizations of cloud-top height. As we can
see from Fig. 12, their pdfs match (approximately) the
original pdf of cloud-top height from Fig. 4d.

7. Main steps of the model

Based on the above description, the software titled
“Simulation of a two-component cloud field,” which
generates realizations of cloud optical depth and cloud-
top height from given observations, has been developed
and is freely available for download from http://
i3rc.gsfc.nasa.gov/Public_codes_clouds.htm (click on
“PDF-based stochastic cloud model”).

Let us summarize here the main steps of the simula-
tion procedure. There are only two input files: the cloud
optical depth �(x, y) and cloud geometrical thickness
h(x, y) (as shown in Figs. 4c and 4d). The main 11 steps
are the following:

1. Read input file �(x, y);
2. Estimate cloud fraction Ac [see (7)];
3. Find the truncation level d from (2);
4. Estimate the covariance function of the indicator

field KI [see (8)];
5. Compute the correlation function K (see appendix

A);
6. Generate a Gaussian homogeneous random field


(x, y) with mean zero and correlation function K
(see appendix B);

FIG. 5. Indicator functions I(x, y) of a cloud field: white is cloud (I � 1) and black is a
cloud-free area (I � 0). Cloud fraction Ac � 0.4. (left) A 68 km � 68 km MODIS image
centered at (17.1°S, 42.16°W) acquired on 9 Aug 2001. (right) A realization of a simulated
field.
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7. Simulate �*(x, y), modifying the Gaussian field ac-
cording to (12);

8. Read input file h(x, y);
9. Calculate joint distribution of � and h fields (see

Fig. 9);
10. Calculate a conditional distribution matrix (13);
11. Using the conditional distribution matrix, simulate

the realization h*(x, y) that corresponds to realiza-
tion �*(x, y) generated at step 7 (see Fig. 11).

In the software, the first seven steps are accom-
plished by the executable file 0x-sp-a-s.exe. The input
file is matrix �(x, y). The output files are a realization
�*(x, y) of cloud optical depth field, the estimated co-
variance function of the indicator field, the computed

autocorrelation function of the Gaussian field, and his-
tograms of the input and output optical depth fields.
The executable file DISTR-M2.exe estimates a joint
distribution function of two random fields, �(x, y) and
h(x, y). The output files of this program are the joint
and conditional distributions (steps 8–10). For the last
step, the executable file X_Ysim.exe is used. It provides
a realization h*(x, y) of the cloud-top height field. In
that way, the realizations �*(x, y) and h*(x, y) imitate
the input fields �(x, y) and h(x, y) by reproducing the
covariance function of the indicator field and joint dis-
tribution of � and h components for the two-
dimensional vectors [�(x, y), h(x, y)]. Note that here the
random fields are assumed to be statistically homoge-
neous and isotropic.

FIG. 6. Four realizations of cloud optical depth; all of them have the same covariance function of the cloud mask
KI(x, y) and histogram g(�) as the one in Fig. 4c. Color scale is as in Fig. 4c. The size of the images is 68 km � 68
km, as in Fig. 5.
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8. Summary

Cloud stochastic models have proved to be an impor-
tant tool to study 3D radiative effects in clouds, espe-
cially in broken cumulus clouds (e.g., Barker and
Davies 1992; Evans 1993; Marshak et al. 1998; Várnai
2000; Evans and Wiscombe 2004; Schmidt et al. 2007).

Here we have provided a theoretical description of a
simple algorithm that generates realizations of the two
correlated stochastic two-dimensional cloud fields that
have statistical characteristics similar to given cloud
fields. Each step of the algorithm has been illustrated

FIG. 7. Estimates of the covariance function KI(x, y) � KI(r)
(r � �x2 � y2) of the indicator function I(x, y) for the observed
(solid line) and simulated (dotted line) cloud fields from Fig. 5.

FIG. 8. The original histogram g(�) and four other histograms
that correspond to four realizations of cloud optical depth shown
in Fig. 6.

FIG. 9. Joint distribution of the given cloud optical depth and
cloud-top height fields.

FIG. 10. The conditional distribution function F(h |�) used to
simulate cloud-top height h; F(h |�) is shown for two values of
optical depth �.
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with two broken cumulus cloud fields: cloud optical
depth and cloud-top height retrieved from MODIS.
Whereas most stochastic cloud models use Fourier fil-
tering of a Gaussian signal to generate the required
correlation (e.g., Schertzer and Lovejoy 1987; Evans
1993; Di Giuseppe and Tompkins 2003; Evans and Wis-
combe 2004; Hogan and Kew 2005; Venema et al.
2006b), our algorithm is based on spectral models of
homogeneous random fields (Prigarin 1995, 2001). A
nonlinear transformation of Gaussian functions (the
method of inverse distribution function) allows us to
keep the distribution function similar to the one of the
first original field. Realizations of the correlated second
field are generated using a conditional distribution ma-
trix.

This paper is accompanied by the software “Simula-
tion of a two-component cloud field,” which has been
recently released and can be freely downloaded from

http://i3rc.gsfc.nasa.gov/Public_codes_clouds.htm. The
software generates a two-component cloud field and
provides programs to simulate two-dimensional distri-
butions. The software contains a program (0x-sp-a-s)
that generates realizations of a broken cloud field (X)
with statistical characteristics (autocorrelation, density,
and indicator functions) similar to the first given
sample, a program (DISTR-M2) that estimates joint
and conditional distributions for the two given samples,
and a program (X_Ysim) that simulates a sample Y
when a sample X is given. At present, the software runs
only on Windows PCs but will be later extended to
other platforms.

Finally we note that this model is a 2D stochastic
model rather than 3D. To extend it to a 3D cloud
model, we need to assume a vertical profile of cloud
liquid water (see Di Giuseppe and Tompkins 2003). A
simple linear increase of liquid water with height can be

FIG. 11. (a) A realization of cloud optical depth from Fig. 6b. (b)–(d) Three additional realizations of cloud-top
height distribution; they correspond to the cloud optical depth field shown in (a). All realizations have the same
conditional distribution F(h |�).
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easily implemented in the frame of this model in its
next stage.
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APPENDIX A

Relations for Covariance Functions of a Gaussian
Random Field and Its Indicators

Assume that 
(x, y) is a homogeneous Gaussian ran-
dom field on the plane with mean zero and correlation
function K(x, y) � E[
(x, y) 
(0, 0)]. Let us consider
two indicator fields with respect to a fixed level d:

I �1��x, y� � �0 for ��x, y� � d
1 otherwise,

I �2��x, y� � �0 for |��x, y� | � d
1 otherwise.

These indicators correspond to model A (1a) and
model B (1b) introduced in section 2. In this appendix
we present the basic relations between covariance func-
tions of the random field 
(x, y) and its indicators (for
details, see Prigarin et al. 2004). For the covariance
functions K(

I
n)(x, y) � E[I (n)(x, y) I(n)(0, 0)] � P[I (n)(x,

y) � 1, I (n)(0, 0) � 1] we have

KI
�n��x, y� � R�n� �K�x, y��, �A1�

where

R�1��r� � �
�
�d�

�
���d�

�r�
, �� d
 d�,

R�2��r� � �
�|
 |�d�

�
�|� |�d�

�r�
, �� d
 d�,

�A2�

and

�r�
, �� � �2��1 � r2 exp�
2 � �2 � 2r
�

2�1 � r2�
���1

�A3�

is the probability density of a two-dimensional Gauss-
ian random vector with zero mean, unit variance of the
components, and a correlation coefficient r between the
components.

To find the correlation function K(x, y) of the Gauss-
ian random field for a quasi-Gaussian model of broken
clouds, it is necessary to estimate function K(

I
n)(x, y)—

i.e., the covariance function of the cloud indicator
field—and to solve numerically Eq. (A1) (n � 1 for
model A and n � 2 for model B). For computations it
is reasonable to use the following representations of
(A2) in terms of Owen’s function:

R�1��r� � ���d� � 2T�d, a�,

R�2��r� � 4���d� � 4�T�d, a� � T�d, 1�a��,
�A4�

where � is the standard normal cumulative distribution
function, a � �(1 � r)/(1 � r), and

T�d, a� �
1

2� �
0

a

exp��d2�1 � u2��2�
du

1 � u2

�A5�

is Owen’s function.

FIG. 12. A pdf of three realizations of cloud-top height shown in
Fig. 11. The original pdf of cloud-top height from Fig. 4d is also
shown.

102 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 66



APPENDIX B

On the Simulation of a Gaussian Homogeneous
Isotropic Field with a Given Correlation Function

Here we briefly present a numerical method used in
the software “Simulation of a two-component cloud
field” for modeling Gaussian random fields on a plane
[for details, see chapter 2 in Ogorodnikov and Prigarin
(1996); chapter 1, and particularly section 1.1.4, in
Prigarin (2001); and Prigarin and Titov (1996)]. To
simulate a Gaussian homogeneous isotropic random
field 
(x, y) with mean zero and correlation function
K(x, y), we use an approximation of the following type:

� JM�x, y� � M�1�2�
j�1

J

cj�
m�1

M

��2 ln�km

� cos�x�j cos�jm � y�j sin�jm � 2��jm�,

where

�j � � j � 0.5�B�J, cj
2 � �

� j�1�B� J

jB�J

z��� d�,

�jm � ��m � �j��M, and z��� � ��
0

�

rJ0�r��K�r� dr,

�jm, �jm, and �j are independent random variables uni-
formly distributed in (0, 1), and the same symbol K is
used for the correlation function (of the isotropic field)
depending on a point on the plane (x, y) and on the
distance r � �x2 � y2: K(r) � K(x, y). Function z(�)
is the radial spectral density [see (6) in section 3]. Such
numerical models are called spectral models because
they approximate stochastic integrals in the spectral de-
composition of the random field

��x, y� � �
0

�� �
��

��

cos��x � �y�
�d� d��

� �
0

�� �
��

��

sin��x � �y���d� d��

by finite sums. Here �(d�d�) and  (d�d�) are the or-
thogonal stochastic measures. [For the details on the
spectral decompositions see, e.g., Gikhman and Sko-
rokhod (1977, p. 273).] The spectral model is a sum of
J � M random harmonics and it depends on three pa-
rameters J, M, and B, where B is an upper boundary of
the radial spectrum of the model. (In the accompanying
software “Simulation of a two-component cloud field,”
parameters J and M are chosen manually, whereas B is
specified automatically). Additional information on the
construction, properties, errors, and convergence of
spectral models can be found in Prigarin (2001).
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