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Abstract

We investigate a class of one-dimensional bounded random cascade models which
are multiplicative and stationary by construction but additive and non-stationary
with respect to some, but not all, of their statistical properties. In essence, a new
parameter H > 0 is introduced to “smooth” standard (p-model) cascades, these
well-studied processes being retrieved at H = 0. The resulting ambivalent statistical
behavior of the new model leads to a 1st order multifractal phase transition in the
structure function exponents, i.e., there is a discontinuity in the derivative of {; =
min{gqH, 1}. We interpret this bifurcation as a separation of the stationary and non-
stationary “ingredients” of the model by lowering the multifractal “temperature”
(1/q) below the critical value H. We also see exactly how the generalized dimensions
D, converge to one in the small scale limit for all ¢. We discuss this last finding in
terms of “residual” multifractality, a singularity spectrum that is entirely traceable
to finite size effects (to which we are never immune in data analysis situations).
Finally, we locate the bounded and unbounded versions of the model in the “¢ =1
multifractal plane” where the coordinates are C; = 1 — D; (a direct measure of
“intermittency”) and H; = (; (a direct measure of “smoothness”), both of which
are normally in the interval [0, 1]. This provides us with a simple way of comparing
the multiplicative models with their additive counterparts, as well as with different
types of geophysical data.
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1. MOTIVATION AND OVERVIEW

Stationarity is a constraint that considerably limits the direct applicability of scale-invariant
stochastic models since, on the one hand, the spectral exponent § does not exceed one in
this case! whereas, on the other hand, natural signals or fields often have 8 > 1. Turbulent
velocity? and passive scalar®* fields come to mind (8 = 5/3), but many other geophysical
signals are also in this category.>® In the following section, we describe a class of models
with non-stationary small scale behavior without leaving the general framework of multi-
plicative cascades. Two different multifractal statistics are then used to characterize them:
singular measures (Sec. 3) and structure functions (Sec. 4) which yield respectively the ex-
ponent hierarchies Dy and H,;. Two interesting concepts are also discussed: respectively,
“residual” multifractality and “multi-affine®” processes that undergo 1st order multifractal
phase transitions. Finally, in Sec. 5, we summarize our findings using the “¢ = 1 multifrac-
tal plane”!; its coordinates are C; = 1 — Dy and H; which quantify respectively the degrees
of inhomogeneity (in the sense of intermittency) and of non-stationarity (in the sense of
signal smoothness) in the system.

2. BOUNDED AND SINGULAR MULTIPLICATIVE
CASCADE MODELS

Consider a homogeneous distribution of some substance on the unit interval. Let ¢,(z.,)
be mth part of the substance distribution after nth step. First (n = 1), we divide the unit
interval into Ag equal parts of length 1/)\g where Aq is an interger > 1, and then weights
Wi;, 3 =1,..., Ao, are applied multiplicatively. In the next step (n = 2), each sub-interval
is further divided into Ag equal parts with corresponding random weights W5; > 0, and so
on. On the nth step, the distribution of the original substance would be:

¢n+l(z)\om—j+l) = d’n(zm)an, .7 = 17""’\07 m = 1$"'9An, ¢0(:L‘1) = la (la')

where A, = A§ (n =1, 2,...) is the grid size in pixels. Then

k(3
$n(em) =[] Wij, d=1,...,%0, m=1,...,Ax, n=1,2,.... (1b)

=1

When A, is large enough, the above processes can be highly intermittent and are generally
referred to as “multifractals”, emphasizing the multiplicative modulation and the sparse-
ness of the sets where the substance is ultimately concentrated. If we let A\g = 2 and,
independently of ¢ = 1,...,n, take Wj; to be either 2p (0 < p < 1/2) or 2(1 — p) with equal
probability, and W;; = 1 — W}, then we retrieve a cascade model known in the turbulence
literature as a “p-model”.® We know that, for such standard (W;; distributed independently
of ¢) conservative ((W) = 1) cascades, the energy spectrum scales as k=% with®:

B=1-Iny(W? <1, (2)
the inequality following directly from Schwartz’s, (W?2) > (W)? = 1.

Now consider Eq. (1) again with Ao = 2and W;; = 1+ £;, (0 < f; <1, j = 1, 2) randomly
but this time with f; — 0 as ¢ — o0o. These models have upper and lower bounds.!® We
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will further assume an algebraic decay with (inner) scale r; = 1/A; = 2%

fi=(@-2p)rf, 0<p<-, 0<H<, (3)

N | =

as originally suggested in Ref. 11. The choice p = 1/2 yields homogeneous fields for any
H. If H = 0, the model reverts to a p-model. If furthermore p = 0 we find §-functions
positioned at random in [0,1); one of the two sub-eddies is made “dead” and the other
remains “alive”, starting randomly with right or left. The parameter H clearly produces
a radical smoothing that converts a cascade of the usual (singular) kind into a more tame
bounded field. The limit H — oo formally leads to a Heaviside step (at z = 0.5) for any
p # 1/2. See Ref. 10 for a discussion of the scaling regimes.

3. SINGULAR MEASURES

Consider the one-dimensional process ¢(z) > 0, z € [0, 1], and the associated measure:

4T
[ e

z
1

/ e(z")dz' >0
0

pr(2) = , z€[0,1~r7]. (4)

If o(z) is stationary, we have (p.(z)?) = (p?) for any ¢, independently of z. If furthermore
@(2) is scale-invariant, we can posit:

(pg) ~ 7'1+(9_1)Dq , O<rgl , (5)

where the generalized dimensions D, appear. In homogeneous situations, i.e., (p?) = (p,)? =
r? (for all r and ¢), Eq. (5) yields D, = 1 (we assume in the following that ¢(z) # 0
almost surely everywhere). In contrast, Dy # 1 for ¢ # 0 translates to very skewed in-
termittent (z)’s. We know that D, is a non-increasing function of ¢.1%'3 Thus D; (the
“information” dimension) is generally smaller than Dy = 1 and the codimension C; = 1—- D,
is a straightforward measure of inhomogeneity in the system.

Applying singularity analysis to the above model, Egs. (4) and (5) lead to:

D, = lim D™ = lim L{q - % S Inaf(1+ £)7 + (1 - f.-)"]}. (6)
=1

n—o00 n—oo q — 1

From Eq. (6), we can find the following measure of intermittency Cf") =1- Dgn) at each
cascade level n. In the bounded case, we have Cg") - C;=0(n—> o)aslongas Y f? < oo
and in fact Dgn) — Dy = 1(n — oo) for all g. The Legendre transform of (g—1)D, yields the
singularity spectrum f(a)!* the f(a) associated with Eq. (6) of course converges to a single
point. For technical details, we refer to Ref. 10 where analytical estimates of convergence
rates are obtained for the specific case in Eq. (3).

For the intermittent (H = 0) processes, the singularities are not smoothed with the in-
crease of n and neither D, nor f(a) depends on n. In this limit the model is unbounded
(identical to the p-model) and has a non-trivial singularity spectrum. The bounded (H > 0)
model is no longer a “multifractal” in the sense of singular measures (D, = 1, a = f(a) = 1)
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in spite of its intrinsically multiplicative character. However, in this case there always
remains a “residual” or “spurious” multifractality at finite n. In data analysis applications
(always at finite resolution), this cannot be distinguished from true multifractality with a
sufficiently narrow singularity spectrum.

4. STRUCTURE FUNCTIONS

The generic stochastic process ¢(z) is now allowed to take any real value and we define:
Ap(r;z)=p(z+71)—p(z), z€l0,1-r].

If o(z) has “stationary increments”, then the structure functions (|Ap(r; z)|?) = (|[Ae(r)]?)
will be independent of z. For scaling processes, we anticipate:

(Ap(r)I) ~ 1, 0<r<, (7)

where (, is concave on (—1, 00) and non-decreasing, at least for bounded processes.'®1® As
a counterpart to the exponent hierarchy D,, we have H, = (,/q which, given that {, = 0,
is non-increasing for any (,. As an analog to the singularity spectrum f(a), one can define
D(h) by taking the Legendre transform of ; + 1.16 The multifractal interpretation of D(h)
is the fractal dimension of the subset of [0, 1] where the local Holder exponent h(z) = h; this
last exponent is defined in [Ap(r; z)| ~ #*(®), Scaling stationary processes are retrieved at
(=0 (h =0, D(h)=1) and as long as non-stationary prevails, , > 0 for ¢ > 0, we have
in particular®

B=C+1=2H,+1>1. (8)

Narrowly distributed increments, {|A@(r)|7) = (|Ap(r)|)?, lead to {; = ¢(1, ie., Hy =
constant. We thus retrieve fractional Brownian motions (fBm’s) which generalize standard
Brownian motion (H, = 1/2); these are probably the best known examples of “self-affine”
random processes.!” Now statistical self-affinity is characterized by the existence of an ex-
ponent H € (0, 1) such that (JAp(Ar)|) ~ AH{|Ap(r)|), A > 0, from our standpoint a
statement at ¢ = 1 only. In contrast, Eq. (7) reads as (|A(Ar)[?) ~ Aqu(lAgo(r)P) and
processes with non-constant H, are called “multi-affine”.” In other words, the ¢ = 1 case
can be related to the fractal dimension of the graph g(¢) of ¢(z), viewed as an object in

two-dimensional space!”:

Dg=2-(1=2-Hy<2. (9)

It is noteworthy that Hy = ¢; > 0 in Eq. (7) is equivalent to a statement of stochastic
continuity, i.e., increments over small distances are (almost surely everywhere) small. We
can view Hy = 2 — D, the codimension of g(y), as a direct measure of “smoothness”
in the signal ¢(z) which in turn is related to the degree of non-stationarity. Recall that
fBm’s with H < 1/2 is referred to as “anti-persistent” (successive increments anti-correlate,
the process is more stationary) while their counterparts with H > 1/2 are “persistent”
(successive increments correlate, the process is less stationary).
For the model in Eq. (3), one finds!®:

Cq:qu:min{qHa 1}’ OS(ISOO, (10)
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Fig.1 The structure functions exponents of bounded cascade models for H = 0,1/3,1/2, 1. The exponents
were calculated theoretically (full lines) and numerically (symbols); in the latter case, each ¢ corresponds
to a single but different realization, hence the scatter. The corresponding D(h) spectrum consists of only
two points: D(h = H) = 1 (i.e., a space-filling set) and D(h = 0) = 0 (i.e., a finite number of points).
The dotted lines illustrate the behavior of ¢, for additive processes (IBm’s) with H equal to 1 (the limiting
case of almost everywhere differentiable functions), 1/2 (standard Brownian motion) and 1/3 (a typical
“anti-persistent”’” process). Notice that this last case yields a “Kolmogorov” energy spectrum (8 = 5/3)
and a “critical” exponent g. = 1/H = 3. The theory predicts trivial structure functions ({; = 0) for singular
models (H = 0) since they are stationary; the numerics are representative of finite size effects (“residual”
multi-affinity).

a linear behavior like (mono-affine) fBm’s for 0 < ¢ < 1/H;and (; = 1for ¢ > 1/H. In
Fig. 1, we show computationally and theoretically obtained scaling exponents (, versus ¢
for different values of H. The unbounded (p-model) limit at H = 0 is quite interesting.
It shows a “residual” shift from {; = 0 in the same sense as discussed in connection with
D, but for multi-affinity, i.e., it is entirely traceable to the finite number of cascade levels
(n = 15 in this case). Three moments deserve to be considered in more detail.

q = 1. From Eqgs. (9) and (10), we find
Dy=2-Hy=max{2- H, 1}. (11)

If H > 1, the graphs of bounded cascade fields are statistically indistinguishable from “sim-
ple” curves with dimension 1; they in fact closely resemble piece-wise constant functions.!? In
the opposite (p-model) limit H = 0, the model is intermittent and stationary and its graph
dimension is 2 (independently of p < 1/2). Alternatively, bounded models are stochastically
continuous (H; > 0) but nowhere differentiable (as long as H < 1), unbounded ones are
discontinuous (Hy = H = 0), unless we are dealing with the degenerate case of flat fields

(p=1/2).
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Fig. 2 Schematical plot of the spectral exponent 3 of bounded and singular cascade models. Notice the
different parameters being varied horizontally. On the Lh.s. (0 < § < 1, stationarity prevails), p varies. On
the r.his. (1 < g < 2, stationary increments prevail), H varies.

g = 2. From Eqgs. (8) and (10), we find
B=C(+1=min{2H,1} +1> 1(H > 0). (12a)

In its multifractal incarnation at H = 0, the model is stationary so Eq. (8), hence [Eq. 12(a)],
no longer apply. From Egs. (2)—(5) we find 8 = D; (the “correlation” dimension for a process
developing in one spatial dimension). In this case Eq. (6) yields Dy = 2—1In3[4p? +4(1-p)?]
hence

B =—Iny(1 -2p(1 - p)] < 1(H =0). (12b)

Both theoretical spectral exponents [Eqs. 12(a) and (b)] are presented in Fig. 2. Notice that
the singular limit of the bounded model (H — 0, p > 0) and the weak variability limit of the
unbounded model (p — 1/2, H = 0) agree (8 — 1%*). “Flicker” noise (8 = 1) lies exactly
at the boundary between stationary scaling processes (8 < 1) and those with stationary
increments (8 > 1). Further arguments for this delineation are provided elsewhere.!

g = qc. This is the highest order moment where the (,’s of bounded models with
smoothing exponent H coincide with those of fBm’s having an identical parameter; namely,
¢c = 1/H. Indeed, for ¢ > g¢., we have (; = 1 for the bounded model [Eq. (10)] and
(s = qH for fBm. In other words, bounded models and fBm’s are indistinguishable by
structure functions alone for moments of order ¢ < ¢.. In the framework of multifractals
and singularity analysis, the so-called thermodynamical formalism!® allows us to interpret
a discontinuity in the (first) derivative of an exponent function like (; as a (first order)
phase transition. In the present model, this qualitative change in statistical behavior for
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large ¢ (low “temperature”, 1/q) is traceable to the boundedness and related large scale
stationarity. This characteristic feature of the model is further discussed in Ref. 19.

5. SUMMARY AND CONCLUSIONS

We study a variant of the random multiplicative cascade model where the weights go to 1
as the cascade proceeds. The resulting field then has upper and lower bounds. We studied
in more detail the one-dimensional case where the weights are 1+ (1 —2p)rH (0 < p < 1/2,
0 < H < 00) at scale r = 27" after n cascade steps, relative to the unit outer scale. Due
to the boundedness, the D, all converge to one (lack of intermittency) with increasing n.
The structure function exponents are more interesting, H, = min{H, 1/q} in the limit

AC,
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» 0.05=5p=<0.45; 0016
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Fig. 3 Bounded and unbounded cascade models in the “multifractal ¢ = 1 plane”. Vertically, we have
more-and-more intermittency, horizontally less-and-less stationarity. All four corners of the natural domain
(H1, C1) € [0, 1] ® [0, 1] are occupied by four well-known cases, each of which is reached by special values
of pand H (at n = oco):

Ci H, Description p H Dy s
0 0 weakly variable scaling stationary noises ~ % 0 2 <1
0 1 almost everywhere differentiable functions < % >1 1 >3
1 0 Dirac §-functions 0 0 2 0
1 1 Heaviside step functions < -;— %) 1 2

For n < o0, we find the model to navigate very near the axes: vertically if H = 0 (variable p), and horizontally
if H > 0 (any p). The distance from the axes decreases with increasing n so we are simply dealing with
finite size effects, essentially “spurious” intermittency or smoothness exponents (see inset).
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n = oo. In essence, by “turning on” the smoothing parameter H we have gone from a
stochastically discontinuous multi-singular model to a bounded continuous multi-affine one.
We further focused on three special statistical moments. The first moment (¢ = 1) is related
to the graph dimension, the second (¢ = 2) is connected with the energy spectrum. The
third (¢ = 1/H) is the critical order beyond which our multiplicative bounded cascade
model, which is multi-scaling (in the sense of multi-affinity), can be distinguished from the
associated additive model (fractional Brownian motion), which exhibits simple scaling.

We can summarize many of our findings with Fig. 3 where we represent the position of
our {p, H; n}-models in what can be called the “g = 1 multifractal plane”. The axes are
both codimensions: the information codimension Ci = 1 — Dy (a direct measure of inter-
mittency) vertically, and horizontally the graph codimension H; = 2— D, (a direct measure
of smoothness and non-stationarity). Such (H,, C;)-plots provide us with a powerful data-
analysis tool.}2? To the best of our knowledge, only a handful of specific multi-affine models
have been proposed.”21:22 We have developed a new one that is general enough to illustrate
the key differences between scaling processes that are stationary and multiplicative, non-
stationary and additive.
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